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Abstract—We report here a methodology for the construction of a conjugated cyanodiene synthon and the propensity of such syn-
thons to participate in the olefin metathesis reaction. To this end, we have developed a strategy for the construction of the C11–C15
fragment of borrelidin and demonstrated the utility of the RCM reaction in the preparation of the final macrolide. To our knowl-
edge, this is the first example of a RCM with a nitrile functionality on a diene.
� 2006 Elsevier Ltd. All rights reserved.
Borrelidin1 was shown to be an 18-membered macrolide
distinguished by a 1,3,5,7-‘skipped’ methylene chain
(C4–C10), a cyclopentane carboxylic acid fragment
and a conjugated cyanodiene unit and has attracted
the attention of several synthetic groups around the
world2 (Fig. 1).

The conjugated cyanodiene unit is unprecedented in nat-
ural product structures, and is an essential feature for
the anti-microbial action of borrelidin. In our endeavors
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Figure 1.
to synthesize this complex macrolide, we envisioned a
strategy employing the versatile RCM or cross-metathe-
sis reaction involving a conjugated cyanodiene synthon
to construct the final macrolide.

Even though RCM reactions on conjugated dienes and
their utility in macrolide construction are known,3 ring
closing metathesis/cross-metathesis of a conjugated
cyanodiene is unprecedented. A literature search re-
vealed a rather interesting pattern, indeed the striking
power of RCM methodology is reflected in the synthesis
of heterocycles,4 lactones,5 sulfones6 and sulfonamides.7

The involvement of a,b-unsaturated esters in RCM and
cross-metathesis are numerous,8 in contrast, no exam-
ples of a,b-unsaturated nitriles in RCM have been
reported, even when the cyano functionality is situated
at the terminus of the diene,9 the only exception being
a cross-metathesis involving acrylonitrile.10 We initially
wanted to test the feasibility of our hypothesis in appro-
priate model systems due to these limited results.

The ylide 1 generated from triphenylphosphine and
chloroacetonitrile was treated with bromine in the pres-
ence of sodium hexamethyldisilylamide to give the cor-
responding bromo-ylide 2.11 Ylide 2 was reacted with
E-crotonaldehyde in dichloromethane to afford the
cyanodiene 3 in 58% yield12 as a mixture of isomers.
Reaction of 3 with isopropylmagnesium bromide and
addition of undecylenic aldehyde to the resulting
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Grignard product gave a mixture of E,Z (4a) and E,E
(4b) isomers13 in 65% yield (Scheme 1) favouring the
E,E isomer (4b). Compound 4 was subjected to column
chromatography to give the individual isomers 4a and
4b which were characterized by NOE studies.14

Compound 4a, when subjected to ring closing metathe-
sis15 with 5 mol % of Grubbs’ II catalyst in refluxing
dichloromethane (0.6 mM with respect to substrate)
for 18 h, gave the macrocycle 5a and unreacted starting
material as observed on TLC. Addition of another
5 mol % of the catalyst and refluxing for 28 h afforded,
exclusively, 5a16 in a yield of 54% along with a trace
amount of dimer (Scheme 2). The geometry of the newly
formed double bond was deduced to be E from the cou-
pling constant value of 15.6 Hz. No chromatographic or
spectroscopic evidence of the Z isomer was observed.
From this study, it was evident that the geometry of
the conjugated cyanodiene in 5a is Z,E which is in accor-
dance with the geometry in borrelidin.17

In contrast, when isomer 4b was subjected to ring clos-
ing metathesis with 5 mol % of Grubbs’ II catalyst in
refluxing dichloromethane (0.6 mM with respect to sub-
strate) for 18 h, formation of both macrocycle 5b18 and
dimer 6 was observed along with unreacted starting
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Scheme 1. Reagents and conditions: (a) NaN(SiMe3)2, Br2, toluene,
�78 �C to rt, (72%); (b) E-crotonaldehyde, CH2Cl2, rt, (58%); (c) (i)
i-PrMgBr, THF, �40 �C, (ii) undecylenic aldehyde, rt, (65% over two
steps).
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Scheme 2. Reagents and conditions: (a) Grubbs’ II, catalyst
(10 mol %), CH2Cl2 (0.6 mM), reflux, 28 h (54%).
diene. Addition of another 5 mol % of the catalyst with
reflux for 28 h increased the amount of dimer. Column
purification gave 5b and 6 with yields of 24% and
22%, respectively, along with 26% of the unreacted diene
(Scheme 3). To our surprise the geometry of the newly
formed double bond was found to be Z from the cou-
pling constant value of 11.0 Hz. No chromatographic
or spectroscopic evidence for the formation of the E iso-
mer was observed.

Intrigued by the anomalous behaviour of the isomers 4a
and 4b during RCM, we sought to substantiate our find-
ings by studying the NOE interactions in compounds 5a
and 5b. The NOE studies also confirmed the E and Z
geometries. To assess the role of the OH group in these
reactions, the hydroxyl functionality in 4b was oxidized
to a ketone with Dess–Martin reagent. The ring closing
metathesis of this ketone with 15 mol % of Grubbs’ II
catalyst in refluxing dichloromethane (0.5 mM with
respect to substrate) for 52 h proved to be very sluggish.

We propose the following models for the contrasting
geometries of the newly formed double bonds during
RCM. In 4a, the Z geometry of the double bond adja-
cent to the cyano group forces the ruthenium complex
on the terminal diene to attack the conjugated double
bond from the top thereby forming the cyclized com-
pound 5a with an E double bond (Fig. 2a). On the other
hand, when the geometry is E (4b), the molecule adopts
a conformation where the ruthenium complex attacks
the conjugated diene from the bottom affording 5b with
a Z double bond (Fig. 2b). Further experiments are
required in order to prove this hypothesis.

The formation of the dimer as a major product in the
RCM of 4b, even at high dilution, shows the propensity
of this isomer to participate in cross-metathesis more
readily than 4a. Further studies are ongoing in this
direction. The higher catalyst/substrate ratio required
in these reactions may be due to catalyst decomposition
mediated by the nitrile group.10

In conclusion, we have undertaken a study on the ring
closing metathesis of a conjugated cyanodiene. To this
end, we have demonstrated a strategy for building the
Z,E C11–C15 conjugated cyanodiene synthon in borre-
lidin. To our knowledge, this is the first example of a
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Scheme 3. Reagents and conditions: (a) Grubbs’ II catalyst
(10 mol %), CH2Cl2 (0.6 mM), reflux, 28 h (5b, 24% and 6, 22%).
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RCM with a nitrile functionality on a diene. Further
studies are ongoing towards the total synthesis of the
macrolide.
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